Changeux, J.-P. (2002). L’homme de vérité M. Kirsch, Trans. Paris: Éditions Odile Jacob. |
|
Last edited by: Dominique Meeùs 2016-05-30 21:00:01 |
Pop. 0%
|
Dans certains cas de cécité précoce, les techniques d’imagerie cérébrale révèlent une extension significative du cortex pariétal somato-sensoriel de l’hémisphère gauche, après un an d’entraînement intensif au braille. Cette aire est concernée en particulier par la perception tactile de l’espace. La trace est stable et persiste pendant plusieurs années. Mais l’imagerie fonctionnelle révèle également un phénomène inattendu : une forte activation des aires visuelles primaires et secondaires du cortex occipital, dont on sait qu’elles sont spécialisées dans la vision chez les sujets voyants. À la suite de l’acquisition du braille, les aires visuelles des sujets aveugles deviennent capables de recevoir et de traiter des informations tactiles. De plus, la stimulation magnétique transcrânienne, nouvelle technique utilisée pour inactiver de façon réversible des aires délimitées du cortex, perturbe considérablement la lecture en braille quand on l’applique au niveau du cortex somato-sensoriel et aussi au niveau du cortex visuel strié chez le malvoyant. Dans le premier cas, la détection des mots en braille est perturbée, quel que soit le sens des mots. Dans le second cas, les sujets détectent le braille, mais sont incapables de dire si le texte a un sens ou non. Dans les deux cas, l’apprentissage de l’écriture braille produit un changement caractéristique de la connectivité cérébrale. Le modèle le plus plausible, sinon le seul, pour rendre compte de ces résultats remarquables, pose qu’à la naissance des connexions fonctionnelles existent déjà entre les cortex somato-sensoriel et visuel ainsi qu’entre le thalamus non visuel et le thalamus visuel. L’apprentissage du braille aurait pour effet de sélectionner mais aussi d’amplifier par bourgeonnement les branchements terminaux des axones de ces voies préexistantes au bénéfice de la lecture tactile. |
Cette analyse ne met pas fin au débat entre nature et culture, mais elle le replace dans une perspective nouvelle. On ne peut plus désormais parler d’inné et d’acquis sans prendre en compte à la fois les données du génome, leur mode d’expression au cours du développement, l’évolution épigénétique de la connectivité sous ses aspects anatomiques, physiologiques et comportementaux. Cela peut paraître très difficile, voire presque impossible, surtout dans le cas du cerveau humain. Pourtant, cette conception du gène et de son expression, à la fois multidimensionnelle, non linéaire et hautement contextualisée, remet en cause des formulations qui ont un impact social très fort : comme les « gènes du bonheur » ou, au contraire, de « la nature strictement constructive du développement mental », dans le premier cas, on omet l’épigenèse, dans le second, la génétique. Le développement du cerveau humain se caractérise fondamentalement par cette « ouverture de l’enveloppe génétique » à la variabilité épigénétique et à l’évolution par sélection, celles-ci étant rendues possibles par l’incorporation dans le développement synaptique d’une composante aléatoire au sein des enchaînements de croissance synaptique en cascade qui vont des débuts de l’embryogenèse jusqu’à la puberté. Chaque « vague » successive de connexions, dont le type et la chronologie sont encadrés par l’enveloppe génétique, est sans doute en corrélation avec l’acquisition de savoir-faire et de connaissances particuliers, mais aussi avec la perte de compétences […] Le savoir inné et l’apprentissage épigénétique se trouvent étroitement entrelacés au cours du développement pré- et postnatal, où se manifestent l’acquisition de savoir-faire et de connaissances, l’entrée en action de la conscience réflexive et de la « théorie de l’esprit », l’apprentissage du langage, des « règles épigénétiques » et des conventions sociales. L’épigenèse rend possibles le développement de la culture, sa diversification, sa transmission, son évolution. Une bonne éducation devrait tendre à accorder ces schémas de développement avec le matériel pédagogique approprié que l’enfant doit apprendre et expérimenter. Petit à petit se met en place ce que Pierre Bourdieu appelle l’« habitus » de chaque individu, qui varie avec l’environnement social et culturel, mais aussi avec l’histoire particulière de chacun. Le caractère unique de chaque personne se construit ainsi comme une synthèse singulière de son héritage génétique, des conditions de son développement et de son expérience personnelle dans l’environnement social et culturel qui lui est propre. Du point de vue plus général de l’acquisition des connaissances, le savoir inné et la plupart des dispositions innées à acquérir des connaissances et à en mettre à l’épreuve leur vérité de manière consciente se sont développés à travers l’évolution des espèces au niveau de l’enveloppe génétique. Par ailleurs, la durée exceptionnellement longue de l’évolution épigénétique dont dispose le cerveau humain a permis une « incorporation » dans le cerveau de caractéristiques du monde extérieur sous forme de « savoir épigénétique ». Inversement, c’est aussi ce qui a rendu possible la production d’une mémoire culturelle qui ne dépende pas directement des limites intrinsèques du cerveau humain et puisse être transmise de manière épigénétique au niveau du groupe social. |
[…] l’ensemble des résultats obtenus à ce jour sur divers modèles animaux démontrent que, si un nombre important de structures cérébrales sont préformées ou innées, l’activité spontanée et/ou évoquée du système nerveux en cours de développement est nécessaire à leur évolution ultérieure. Les principales caractéristiques de l’organisation cérébrale propres à l’espèce sont déterminées par une enveloppe génétique qui commande la migration et la différenciation des catégories de cellules, la croissance et la formation étendue de connexions, le comportement des processus nerveux en cours de croissance, la reconnaissance de cellules cibles et le démarrage de l’activité spontanée. Cette enveloppe détermine également la structure des molécules qui entrent dans l’architecture des synapses, les règles régissant leur assemblage ainsi que le contrôle de leur évolution, par l’activité du réseau. Néanmoins, au sein de cette enveloppe génétique, des processus « épigénétiques » se manifestent dans le réseau en développement, comme l’attestent tant les phénomènes régressifs que les processus de croissance des connexions que je viens de mentionner. Au cours de périodes sensibles du développement, on peut donc assister temporairement à une diversification exubérante de contacts svnaptiques, suivie de la stabilisation sélective de certains de ces contacts labiles et de l’élimination (ou de la rétraction) des autres. Concurremment, des phénomènes de croissance et de régénération des connexions peuvent se poursuivre à l’échelon local. Ces « allées et venues » des contacts synaptiques se maintiennent chez l’adulte. Mais l’équilibre se déplace au cours du vieillissement, et la régression finit par l’emporter avant la mort. |
Dans le cerveau humain, on compte environ cent milliards de neurones et de l’ordre de un million de milliards de connexions entre neurones. |
Changeux, J.-P. (1984). L’homme neuronal 5th ed. Paris: Fayard. |
|
Last edited by: Dominique Meeùs 2011-01-02 15:35:12 |
Pop. 0%
|
Qu’est-ce que 200 000 ou même 1 000 000 de gènes devant le nombre de synapses du cerveau humain, ou même devant le nombre de singularités neuronales en principe repérables dans le cortex cérébral de l’homme ? Il ne peut exister de correspondance simple entre la complexité d’organisation du génome et celle du système nerveux central. L’aphorisme : « un gène — un enzyme » de Beadle et Tatum (1941), en aucune manière ne devient : « un gène — une synapse ». Alors, comment expliquer que l’organisation si complexe du système nerveux central des vertébrés, se construise, de manière reproductible, à partir d’un si petit nombre de déterminants génétiques ? La réponse est à chercher dans la manière dont cette complexité se construit au cours du développement embryonnaire […] |
Edelman, G. M., & Tononi, G. (2000). Comment la matière devient conscience J.-L. Fidel, Trans. Paris: Éditions Odile Jacob. |
|
Last edited by: Dominique Meeùs 2016-05-30 19:22:45 |
Pop. 0%
|
Le cerveau humain adulte pèse environ 1,5 kilogramme et contient environ cent milliards de cellules nerveuses ou neurones. La structure la plus récente par son évolution, le cortex, contient environ trente milliards de neurones et un million de milliards de connexions ou synapses. |
Jouvet, M. (1992). Le sommeil et le rêve. Paris: Éditions Odile Jacob. |
|
Last edited by: Dominique Meeùs 2016-05-30 21:23:52 |
Pop. 0%
|
Faut-il alors admettre que le programme génétique mis en jeu pendant le développement pré- et postnatal soit responsable, une fois pour toutes, des innombrables et subtiles connexions interneuronales à l’origine de tel ou tel trait de caractère, pendant toute une existence ? C’est tout simplement impossible, d’une part parce que la programmation génétique de milliers de milliards de connexions synaptiques nécessiterait un nombre de gènes bien supérieur à celui qui existe dans le génome, et, d’autre part, parce que les influences de l’environnement finiraient par altérer définitivement ces connexions. |
Lévy, J.-P. (1997). La fabrique de l’homme. Paris: Éditions Odile Jacob. |
|
Last edited by: Dominique Meeùs 2010-01-02 08:12:20 |
Pop. 0%
|
Au total, des phénomènes chimiques très simples, mettant en œuvre un petit nombre de molécules, expliquent l’influx nerveux de repos, sa modulation en période d’excitation et sa transmission, électrique tout le long du neurone, puis chimique dans les synapses. La nature du médiateur libéré par le neurone conditionne par ailleurs sa fonction précise : dans le cortex, les neurones les plus nombreux libèrent du glutamate et exercent ainsi une fonction activatrice, mais d’autres libèrent du GABA (acide gamma-aminobutyrique) et sont au contraire inhibiteurs de l’activation. De même, les neurones de certains noyaux du tronc cérébral envoient dans tout le cerveau de longs axones qui sécrètent de la dopamine ou de la sérotonine, ou d’autres médiateurs qui conditionnent le type de réponse des neurones récepteurs et, par conséquent, une fonction cérébrale précise. Ce qui peut surprendre finalement, c’est qu’il ne se passe rien d’autre dans les neurones que des phénomènes physiques et chimiques aussi simples, même lorsqu’il s’agit d’expliquer la pensée ! |
Le moi n’est apparemment que la perception d’un état neural, strictement présent, intégrant l’état actuel du corps et toutes les informations mémorisées sur ce corps, sur ses interactions avec le monde et même sur ses projets, qui sont en fait des souvenirs du futur possible. Il est non seulement lié au présent mais en permanence en train de se modifier au gré du présent. Quand je dis « moi », je me réfère à un ensemble d’informations sur ma machine, pour l’essentiel inconscientes, dont une fraction émerge, ou plus précisément vient juste d’émerger à ma conscience, dans un passé très récent que j’appelle « le présent ». Et ces informations vont se modifier avec ce présent
Où suis-je ? Que suis-je ? Suis-je un ou deux ? L’ambiguïté du moi, c’est qu’en même temps qu’il se perçoit comme corps il se ressent aussi comme quelque chose d’autre, qui en serait prisonnier. Le dualisme, l’idée d’un corps habité par un esprit, est naturel et universel. Il est à l’origine de toutes les religions. Et pourtant, tout le monde constate l’évidence de la dégradation de l’esprit avec celle du cerveau, voire de son anéantissement dans un corps atteint de la maladie d’Alzheimer, par exemple. Où serait un esprit autonome dans cette machine dont la pensée est morte ? Mais l’esprit qui se pense lui-même se place naturellement hors de son objet au cours de ce processus, il ne peut donc pas s’assimiler à la machine biologique qui le produit. L’esprit (ou l’âme, si l’on préfère) est un ensemble d’informations de la machine, sur le monde et sur elle-même, qui proviennent exclusivement de ses circuits de neurones, et sont mortelles avec eux. […] Je me pense, donc je suis. Où ? Je suis entièrement inscrit dans mon cerveau, dans un langage dont les symboles sont des réseaux activables de neurones, avec des synapses renforcées qui donnent des préférences à certains de ces réseaux, ou plutôt à certaines de leurs associations. Pourtant, le dualisme continue à obséder une grande partie des humains, même ceux qui s’occupent de sciences cognitives. Or toute la pensée ne peut venir que de la matière, du corps. Comme l’écrit Edelman, « l’esprit est un processus d’un type particulier qui dépend de certaines formes particulières d’organisation de la matière », ou encore : « Darwin avait raison : c’est la morphologie qui a donné l’esprit. Et sur ce point Wallace, qui pensait que la sélection naturelle ne pouvait pas rendre compte de l’esprit humain, avait tort. Quant à Platon, il n’avait même pas tort : il était tout simplement à côté de la question. » C’est peut-être le permanent remaniement de l’esprit, c’est-à-dire du cerveau, qui le produit, qui donne cette impression de localisation de la pensée hors du corps. Mon moi, « je », est un gigantesque ensemble d’informations sur le monde, mais aussi sur moi, et sur moi dans le monde. Certaines de ces informations, le noyau dur interne, sont celles de l’espèce, génétiquement transmises dans mes cerveaux anciens et à peu près inaltérables, elles font mon humanité élémentaire et mes limites. D’autres, implantées solidement, sont en particulier les acquis de ma formation depuis l’enfance, ancrés dans mon cortex mais bien contrôlés par mes circuits limbiques, avec leurs connotations affectives et leur sentiment de vérité. Elles sont, pour cela, difficiles à faire évoluer. D’autres encore, plus récentes, issues de mon néocortex, se greffent sans cesse sur cet ensemble, comme une surface bouillonnante, infiniment changeante. Étant donné son remaniement permanent sous l’effet de sa propre activité, le cerveau n’est totalement le même que dans l’instant. Sous l’influence du monde extérieur, du corps, ou de son propre bouillonnement intérieur, une information particulière émerge à la conscience et, prise en compte par le cerveau lui-même qui l’a produit, elle va du même coup le modifier. Nous sommes en permanent devenir. |
Vignaux, G. (1991). Les sciences cognitives: Une introduction. Paris: Éditions La Découverte. |
|
Added by: Dominique Meeùs 2010-11-13 16:46:16 |
Pop. 0%
|
Dans certains cas, on découvre ainsi que les signaux synaptiques circulent avec des efficacités variables selon les branches dendritiques qu’ils suivent. On constate que dans certaines dendrites aux branchements éloignés de la cellule, il existe des régions indépendantes en quelque sorte les unes des autres, lesquelles constitueraient des sortes de sous-unités à l’intérieur desquelles apparaissent des « processus d’interactions non linéaires » entre synapses, et dont l’effet ressemblerait à une multiplication des signaux. Seul alors le résultat parviendrait au corps cellulaire — comme si ces sous-unités étaient des « coprocesseurs fonctionnant en parallèle » (R Gogan, S. Tyc-Dumont, 1988). En conséquence, il apparaît que la géométrie de chaque élément va déterminer d’une certaine façon les types et les capacités de traitement des informations nerveuses par le neurone. Cela se vérifie, entre autres, par cette constatation qu’une même synapse peut avoir des effets très variables selon sa localisation dans l’arborescence dendritique. À l’évidence, les effets des synapses sont tributaires de la forme dendritique qui les réceptionne, et cela va être déterminé, à chaque fois, par la configuration spatiale des synapses concernées. Sans doute, ainsi, les processus synaptiques de transmission des informations nerveuses sont-ils communs à bien des espèces, mais au moins peut-on faire l’hypothèse — sous réserve d’éventuelles remises en cause futures — que c’est bien cette géométrie tridimensionnelle des neurones qui va permettre la richesse des traitements d’informations dont ils se révèlent capables, et que cette architecturation interne au neurone, mais aussi composée et interagissante entre différentes régions du cerveau, est encore responsable de nos capacités neurobiologiques et intellectuelles supérieures aux autres espèces, notamment sous l’aspect de ces extraordinaires spécifications fonctionnelles dont témoignent l’organisation et le fonctionnement du cerveau humain (P. Gogan, S. Tyc-Dumont, 1988). |
D’une part, la plasticité cérébrale n’est pas indéfinie — quand un certain nombre d’ajustements sont terminés, les voies neuronales perdent toute capacité de se modifier — et, d’autre part, dans certaines parties du cerveau, il est essentiel, en revanche, que demeure une plasticité permanente, parce qu’il s’agit de circuits neuronaux permettant l’apprentissage et assurant au cerveau de stocker continûment de nouvelles connaissances. |